Efficient Exploration

Efficient Exploration is one of the main obstacles in scaling up modern deep reinforcement learning algorithms. The main challenge in Efficient Exploration is the balance between exploiting current estimates, and gaining information about poorly understood states and actions. Source: [Randomized Value Functions via Multiplicative Normalizing Flows ](https://arxiv.org/abs/1806.02315)
相关学科: Atari GamesMeta Reinforcement LearningDQNDistributional Reinforcement LearningContinuous ControlMulti-Agent Reinforcement LearningStarcraft IIEntropy RegularizationSoft Actor CriticHierarchical Reinforcement Learning

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Bernhard Schölkopf

117502 被引用,1231 篇论文

Jürgen Schmidhuber

101619 被引用,563 篇论文

William L. Jorgensen

89420 被引用,601 篇论文

Ruslan Salakhutdinov

89393 被引用,413 篇论文

Pietro Perona

79041 被引用,423 篇论文

Sebastian Thrun

75432 被引用,407 篇论文

Peter Stone

69897 被引用,1396 篇论文

Ik Siong Heng

66447 被引用,476 篇论文

Alessandra Romero

64362 被引用,1445 篇论文

Alex Graves

61500 被引用,98 篇论文