Domain Adaptation
0 订阅
Domain adaptation is a field associated with machine learning and transfer learning. This scenario arises when we aim at learning from a source data distribution a well performing model on a different (but related) target data distribution. For instance, one of the tasks of the common spam filtering problem consists in adapting a model from one user (the source distribution) to a new user who receives significantly different emails (the target distribution). Domain adaptation has also been shown to be beneficial for learning unrelated sources. Note that, when more than one source distribution is available the problem is referred to as multi-source domain adaptation.
相关学科: Unsupervised Domain AdaptationTransfer LearningSemantic SegmentationMachine TranslationCycleGANPerson Re-IdentificationRepresentation LearningImage-to-Image TranslationDomain GeneralizationStyle Transfer
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Jian Sun
179895 被引用,332
篇论文
Ilya Sutskever
165856 被引用,113
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文
Yang Yang
143009 被引用,2784
篇论文
Christopher D. Manning
123173 被引用,515
篇论文
Trevor Darrell
121211 被引用,688
篇论文
Jitendra Malik
118374 被引用,531
篇论文
Bernhard Schölkopf
117502 被引用,1231
篇论文