Convolution
0 订阅
A convolution is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output. Intuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space). Source: https://arxiv.org/pdf/1603.07285.pdf
相关学科: CVMLImage ClassificationU-NetObject DetectionTransfer LearningResNetSemantic SegmentationAlexNetSuper-Resolution
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Geoffrey E. Hinton
345738 被引用,408
篇论文
Yi Chen
267689 被引用,4684
篇论文
David Haussler
210533 被引用,548
篇论文
Kaiming He
202871 被引用,125
篇论文
Karl J. Friston
198421 被引用,1357
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Richard Durbin
189768 被引用,339
篇论文
Jian Sun
179895 被引用,332
篇论文
Yann LeCun
175383 被引用,366
篇论文