Combinatorial Optimization

Combinatorial Optimization is a category of problems which requires optimizing a function over a combination of discrete objects and the solutions are constrained. Examples include finding shortest paths in a graph, maximizing value in the Knapsack problem and finding boolean settings that satisfy a set of constraints. Many of these problems are NP-Hard, which means that no polynomial time solution can be developed for them. Instead, we can only produce approximations in polynomial time that are guaranteed to be some factor worse than the true optimal solution. Source: [Recent Advances in Neural Program Synthesis ](https://arxiv.org/abs/1802.02353)
相关学科: Traveling Salesman ProblemShop SchedulingData Structures and AlgorithmsNeural and Evolutionary ComputingTSGraph PartitioningComputational ComplexityBoltzmann machineRandom SearchStochastic Search

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Stephen Boyd

132438 被引用,861 篇论文

David E. Goldberg

117660 被引用,480 篇论文

Kurt Wüthrich

95222 被引用,867 篇论文

Robert L. Byer

85720 被引用,1126 篇论文

Marco Dorigo

77887 被引用,710 篇论文

Rajkumar Buyya

74854 被引用,1162 篇论文

Quoc V. Le

73373 被引用,205 篇论文

S. Shankar Sastry

70326 被引用,894 篇论文