Causal Inference

Causal inference is the process of drawing a conclusion about a causal connection based on the conditions of the occurrence of an effect. The main difference between causal inference and inference of association is that the former analyzes the response of the effect variable when the cause is changed.
相关学科: Selection BiasCausal DiscoveryEpidemiologyImputationSurvival AnalysisVariable SelectionExperimental DesignCounterfactual InferenceBayesian InferenceModel Selection

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

George Davey Smith

217952 被引用,2798 篇论文

Donald B. Rubin

207461 被引用,567 篇论文

Karl J. Friston

198421 被引用,1357 篇论文

Rory Collins

179573 被引用,565 篇论文

Trevor Hastie

173966 被引用,454 篇论文

Eric Boerwinkle

168174 被引用,1460 篇论文

Luigi Ferrucci

161403 被引用,1823 篇论文

Bernhard Schölkopf

117502 被引用,1231 篇论文

Joseph F. Hair

106583 被引用,300 篇论文