Causal Inference
0 订阅
Causal inference is the process of drawing a conclusion about a causal connection based on the conditions of the occurrence of an effect. The main difference between causal inference and inference of association is that the former analyzes the response of the effect variable when the cause is changed.
相关学科: Selection BiasCausal DiscoveryEpidemiologyImputationSurvival AnalysisVariable SelectionExperimental DesignCounterfactual InferenceBayesian InferenceModel Selection
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
George Davey Smith
217952 被引用,2798
篇论文
Donald B. Rubin
207461 被引用,567
篇论文
Karl J. Friston
198421 被引用,1357
篇论文
Rory Collins
179573 被引用,565
篇论文
Trevor Hastie
173966 被引用,454
篇论文
Eric Boerwinkle
168174 被引用,1460
篇论文
Luigi Ferrucci
161403 被引用,1823
篇论文
Bernhard Schölkopf
117502 被引用,1231
篇论文
Joseph F. Hair
106583 被引用,300
篇论文