Automated Feature Engineering

Automated feature engineering improves upon the traditional approach to feature engineering by automatically extracting useful and meaningful features from a set of related data tables with a framework that can be applied to any problem.
相关学科: ULMFiTAutoMLFeature EngineeringUnsupervised Pre-trainingHate Speech DetectionELMoFastTextNASHyperparameter OptimizationFeature Importance

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

James D. Brooks

25554 被引用,393 篇论文

Slawomir Koziel

19782 被引用,1212 篇论文

Daniel L. Rubin

16221 被引用,489 篇论文

Christopher Ré

14094 被引用,403 篇论文

Tina Hernandez-Boussard

12415 被引用,238 篇论文

John W. Bandler

9764 被引用,409 篇论文

Xia Hu

9715 被引用,259 篇论文

Hongyu Zhang

6063 被引用,223 篇论文

Renato Bruni

5692 被引用,198 篇论文

Arun Kumar

5471 被引用,703 篇论文