AutoEncoder (AE)

An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner. The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore signal “noise”. Along with the reduction side, a reconstructing side is learnt, where the autoencoder tries to generate from the reduced encoding a representation as close as possible to its original input, hence its name. Extracted from: Wikipedia
相关学科: VAEAnomaly DetectionDenoisingRepresentation LearningCryptography and SecurityDimensionality ReductionLSTMMLSoftmaxSound

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Simon I. Hay

186406 被引用,616 篇论文

Jian Sun

179895 被引用,332 篇论文

Yann LeCun

175383 被引用,366 篇论文

Ilya Sutskever

165856 被引用,113 篇论文

Xiang Zhang

138753 被引用,2111 篇论文

Christopher D. Manning

123173 被引用,515 篇论文

Andrew Y. Ng

114296 被引用,356 篇论文

Jeffrey Dean

113261 被引用,113 篇论文