AutoEncoder (AE)
0 订阅
An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner. The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore signal “noise”. Along with the reduction side, a reconstructing side is learnt, where the autoencoder tries to generate from the reduced encoding a representation as close as possible to its original input, hence its name. Extracted from: Wikipedia
相关学科: VAEAnomaly DetectionDenoisingRepresentation LearningCryptography and SecurityDimensionality ReductionLSTMMLSoftmaxSound
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Geoffrey E. Hinton
345738 被引用,408
篇论文
Simon I. Hay
186406 被引用,616
篇论文
Jian Sun
179895 被引用,332
篇论文
Yann LeCun
175383 被引用,366
篇论文
Ilya Sutskever
165856 被引用,113
篇论文
Xiang Zhang
138753 被引用,2111
篇论文
Christopher D. Manning
123173 被引用,515
篇论文
Andrew Y. Ng
114296 被引用,356
篇论文
Jeffrey Dean
113261 被引用,113
篇论文