Adversarial Attack

An Adversarial Attack is a technique to find a perturbation that changes the prediction of a machine learning model. The perturbation can be very small and imperceptible to human eyes. Source: Recurrent Attention Model with Log-Polar Mapping is Robust against Adversarial Attacks , https://arxiv.org/abs/2002.05388
相关学科: Adversarial DefenseAdversarial RobustnessNode ClassificationImage ClassificationMalware DetectionAdversarial Attack DetectionAdversarial TextFaster R-CNNSelf-Driving CarsInception-v3

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Geoffrey E. Hinton

345738 被引用,408 篇论文

Yi Chen

267689 被引用,4684 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Anil K. Jain

148144 被引用,1055 篇论文

Xiang Zhang

138753 被引用,2111 篇论文

Harlan M. Krumholz

137826 被引用,2347 篇论文

Trevor Darrell

121211 被引用,688 篇论文

Bernhard Schölkopf

117502 被引用,1231 篇论文

Ian Goodfellow

92697 被引用,135 篇论文

Stanley Osher

84093 被引用,532 篇论文